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J. Phys. A: Math. Gen. 14 (1981) 3301-3327. Printed in Great Britain 

Observation of a long-time tail in Brownian motion 

G L Paul? and P N Pusey 
Royal Signals and Radar Establishment, Malvern, Worcestershire, WR14 3PS, England 

Received 28 April 1981 

Abstract. By photon correlation dynamic laser light scattering we have measured the time 
dependence of the mean-square displacement ( A x 2 ( t ) )  of spherical particles (radius 
-1.7 pm) in Brownian motion. Clear evidence was found for the existence of a t”’ t e m  in 
(AX’([)) which corresponds to the expected t-”’ ‘long-time tail’ in the particle velocity 
autocorrelation function. The experimentally determined amplitude of the t l / *  term was 
about 74 * 3% of the value predicted theoretically. Despite detailed consideration of 
possible systematic errors we were unable to explain the magnitude of this disagreement. 

1. Introduction 

Until about 15 years ago it was widely thought that microscopic processes (such as 
velocity fluctuations) and macroscopic processes (such as diffusion) in fluid systems 
were associated with well separated timescales. Doubt was cast on this viewpoint by the 
molecular dynamics computer ‘experiments’ of Alder and Wainwright (1967, 1968, 
1970) which showed a slow, tC3’2, asymptotic decay in the velocity autocorrelation 
function of an atom in a hard-sphere fluid. Qualitatively this observation was explained 
in terms of the slowly developing viscous flow pattern (which could be described by 
macroscopic hydrodynamics) in the fluid surrounding the atom in question (Alder and 
Wainwright 1970, Zwanzig and Bixon 1970). In the years since this discovery such 
‘long-time tails’ in correlation functions of microscopic properties have appeared in 
many theories (see Pomeau and Rdsibois 1975 for a review) and their existence has 
become generally accepted among statistical physicists. Nevertheless real (as opposed 
to computer) experimental evidence for these slow decays remains remarkably sparse. 
Indications of their existence have been found in neutron scattering by simple liquids 
(Andriesse 1970, Carneiro 1976, Bosse et a1 1979) and in the direct observation of the 
movement of microscopic particles, either after acceleration by a shock wave (Kim and 
Matta 1973) or in natural Brownian motion (Fedele and Kim 1980). Also Bouchiat and 
Meunier (1971, 1972) have observed the effects of slow bulk velocity correlations on 
the thermally excited vibrations of a free liquid surface (see also Zollweg et a1 1971, 
Nelkin 1972). Early in the development of the subject it was realised that the technique 
of dynamic light scattering offered promise for the detection of a long-time tail in the 
velocity autocorrelation function of spherical particles in Brownian motion (B J Berne 
1971 private communication, Nelkin 1972, Harris 1975). Because of various experi- 
mental difficulties there has, to date, been only one successful experiment on these 
lines. Boon and Bouiller (1976) (also Bouiller et a1 1978) reported an effect of the 
magnitude predicted theoretically; however the statistical error in their measurements 
was large, about half the size of the effect itself. 

t On leave from the University of New South Wales, Sydney, Australia. 
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Here we report a measurement similar to, but much more precise than, that of Boon 
et al. In these experiments the detectability of the long-time tail is determined largely 
by the ratio pR/7*  where R is the particle radius, p the density of the suspending fluid 
and 7 its shear viscosity (§ 2.3). The increased precision of our experiment compared 
with that of Boon et a1 stems from three factors: (i) the use of much larger spheres 
(radius -1.7 pm compared with 0.088 pm), (ii) measurements made at much shorter 
times compared with the characteristic decay time of the light scattering correlation 
function, where the effect sought is larger, (iii) long experimental accumulation times 
(as much as a day in some cases). 

For various reasons, dynamic light scattering experiments on spheres of radius 
0.5 pm or more are notoriously difficult. Because the size distribution of our spheres 
was extremely narrow ( 0  3.1), problems associated with the size dependence of the 
angular scattering intensity profile were avoided. In preliminary experiments the main 
problem was found to be correlated motions of the particles due to residual convective 
flows in the suspending fluid and, possibly, sedimentation. In the final experiments 
convection was minimised by using a small sample volume (1 x 0.2 cm2 cross section by 
less than 1 cm high) and immersing the sample cell in a 3 1 water bath. Sedimentation 
was reduced by (nearly) matching the density of the fluid (H20 + D20) to that of the 
particles (-1.055 g ~ m - ~ ) .  

Our results (figures 3 and 4)  clearly support the existence of a negative t1l2 term in 
the mean-square displacement of a Brownian particle corresponding to a t-3/2 tail in its 
velocity autocorrelation function. While the magnitude of this term was about 25 times 
greater than the estimated statistical error in its measurement, it was only about 
74* 3% of the value predicted theoretically (see table 6, last column). By contrast, the 
long-time diffusion coefficient of the particle, measured by dynamic light scattering, was 
found to be about 4 f 2% smaller than the value calculated from the particle size. This 
latter discrepancy indicates the presence of some (relatively small) systematic error in 
the measurements. However, despite detailed consideration of possible sources of 
systematic error ( Q  6), we were unable to explain the much larger discrepancy, 
mentioned above, between the experimentally found and theoretically predicted 
magnitudes of the long-time tail (see § 7 for further discussion). 

In the next section we outline the theory of both the light scattering measurement 
and of the velocity autocorrelation function and mean-square displacement of a 
Brownian particle. Experimental details are given in § 3.  Section 4 is devoted to 
presentation of the results which show long-time tail effects most clearly whereas in § 5 
details of supplementary experiments, necessary for validation of our approach to the 
problem, are given. In the main these latter experiments corroborate those of § 4 
though some minor inconsistencies remain unresolved. In § 6 we consider in detail 
possible sources of systematic error which include distortions in the electronic signal 
processing, convection and sedimentation, heterodyning, number fluctuations, dust, 
multiple scattering, wall effects and interparticle interactions. Our conclusions are 
summarised in Q 7. Sections 5 and 6 could be omitted by a casual reader. 

2. Theory 

2.1. Light scattering 

Photon correlation dynamic light scattering (for reviews see Cummins and Pike 1974, 
1977) provides an experimental estimate of the normalised temporal autocorrelation 
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function g‘2’(T) of the scattered light intensity I: 

g‘2’(.r) = ( I ( O ) W ) / ( ~ ) ’ .  (2.1) 

Here T is the correlation delay time and the angular brackets indicate time or ensemble 
averages. If the light is scattered by a large number of particles, its field amplitude is a 
complex Gaussian random variable and 

g‘*’(r) = 1 +c(g“’(7) ) ’  (2.2) 
where c is an apparatus constant of order one determined by spatial coherence, signal to 
dark count ratio, etc. If the particles are identical, spherical and non-interacting the 
field correlation function g“’(T) is just the so-called self intermediate scattering 
function 

(2.3) g‘”(K, 7) = (exp i K h x ( ~ ) )  

where K is the magnitude of the scattering vector 

K = ( 4 v / A o ) n  sin $6, (2.4) 
A. being the wavelength of the light in vucuo, n the refractive index of the particle 
suspension and 6 the scattering angle. The particle displacement Ax(7)  is given by 

where v ( t )  is one Cartesian component of particle velocity; the average particle motions 
are assumed to be isotropic. If the random forces (§ 2.2), due to the suspending fluid, 
which drive the particle motion have Gaussian statistics it follows that v ( t )  and hence 
Ax (T) are also zero-mean Gaussian-distributed variables (e.g. Dufty 1974, Fox 1977). 
Then (2.3) becomes (e.g. Davenport and Root 1958) 

g‘”(K, 7) = exp( -$K’(Ax2(7))) (2.6) 
and a measurement of g‘”(7) gives directly, through (2.2) and (2.6), an experimental 
estimate of the mean-square particle displacement (Ax’(7)). 

2.2. The velocity autocorrelation function and mean-square displacement 

Prior to the discovery of long-time tails the dynamics of Brownian motion were 
traditionally described by the simple Langevin equation (e.g. Uhlenbeck and Ornstein 
1930, reprinted in Wax 1954) 

m.ti(t) = - f v ( t ) + F ( t )  (2.7) 
where m is the particle mass andF( t )  is the ‘random force’. The frictional coefficient f is 
given by the Stokes expression 

f = 6 r q R  (2.8) 
where 77 is the shear viscosity of the suspending fluid and R the particle radius. With the 
usual assumption that F ( t )  is S correlated it is straightforward to show that the velocity 
autocorrelation function q5 ( t )  corresponding to equation (2.7) is 

q5(t) E ( ~ ( O ) v ( t ) )  = ( k T / m )  exp[-(f/m)tI (2.9) 
where k is Boltzmann’s constant and T the absolute temperature. The Einstein 
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expression for the particle diffusion constant D follows immediately from (2.9): 
r e  

D = J 4(t)  dt = kT/f. 
0 

(2.10) 

Soon after their discovery it was recognised that long-time tails could be attributed 
physically to the effect on the particle of time-dependent velocity fields set up in the 
fluid by the particle motion itself. Mathematically this can be described by the addition 
of inertial and memory terms to equation (2.7) (Zwanzig and Bixon 1970, Widom 
1971): 

* ?j ( f ' )  , d t ' + F ( t )  (2.11) J-, ( t - t 
md ( t )  = -fv ( t )  - i ~ p R  3d ( t )  - 6R ' ( ~ ~ p ) l / ~  

where p is the fluid density. 
The determination of 4( t )  from (2.1 1) has been discussed by many authors (see e.g. 

Pomeau and RCsibois 1975, Zwanzig and Bixon 1975, Pusey 1979 for references, also 
Hinch 1975, Warner 1979, Jones 1980 for more recent work) and is best approached by 
Laplace transformation. The relevant mathematics are summarised in the appendix. 
The results needed here are given below. 

(i) Equation (2.10) is still valid so that the long-time diffusion constant is not 
affected by the extra terms in (2.11). 

(ii) The asymptotic behaviour of 4( t )  at long times is given by 

(2.12) lim 4(t)  =y[TL'2t-3/2-1 D 3 / 2  -512 d7-4ppIp)TL t +. .  .I 
t+m 2 J.ir 

where pp is the particle density and 

TL pR '177 (2.13) 

is the characteristic time taken by a viscous shear wave to propagate across the particle 
(e.g. Landau and Lifshitz 1966, p 89). 

(iii) The asymptotic behaviour of the mean-square displacement is 

Thus, at large enough T ,  (AX'(.)) reduces to the usual macroscopic expression 

lim (Ax2(7) )  = 207. 
T+m 

(2.15) 

(iv) A useful quantity, which will be used in the data analysis (8  4), is the 'time- 
dependent diffusion coefficient' defined by 

D ( T )  = IoT 4 ( t )  dt. 

D ( r )  is the local slope (at t = r )  of a plot of (Ax2(t))/2 against t and is given by 

(2.16) 

3 / 2  

(2.17) 
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2.3. Detectability of the long-time tail 

It is clear from equations (2.12)-(2.17) that the effect of the long-time tail in 4(t)  on the 
quantities ( A x ~ ( T ) )  and D ( T )  measured by light scattering is most marked at short times 
(and becomes negligible for T/  TL >> 1). However, in such experiments an effective lower 
bound on the delay time T is imposed by considerations of statistical accuracy. Photon 
correlation spectroscopy provides samples of g"'(K, T )  (equation (2.6)) at discrete times 
T = pTs ( p  = 1,2 ,  . . . ,88, in our experiments) where Ts is a variable sample time, 
pre-set for a given experiment. As Ts is decreased, the decay of g"'(K, T )  from point to 
point becomes, srrialler whereas the statistical uncer tainty in a given point generally 
becomes larger. Therefore the accuracy with which the decay of g"'(K, T )  and hence 
D ( T )  can be measured also decreases. In the absence of long-time tail effects, the 
characteristic decay time of g"'(K, T )  is given by (equations (2.6) and (2.15)) 

Tc = (OK2)- ' .  (2.18) 

A measure of the detectability of long-time tail effects in light scattering measurements 
is therefore the ratio of the two times TL (2.13) and Tc (see also Bouiller et a1 1978): 

TL/Tc = (kT/6r)(pR/q2)K2.  (2.19) 

It is evident that measurements should be made on large spheres in a high-density, 
low-viscosity fluid using as large a scattering vector as possible, i.e. with A. small and 8 
large (equation (2.4)). 

For our experiments ( D  = 1.1 x lo-' cm2 s-', K 2  ~ 9 . 9  x 10'" cmP2, R = 1.7 pm, 
p ~ 1 . 0 5 g c m - ~ ,  q = O . O 1 1  poise), Tc==9 .2~10-3s ,  T L ~ 2 . 8 ~ 1 0 - ~ s s o t h a t  TL/Tc= 
3 x For the experiments of Bouiller et al, typically Tc = 1 . 9 ~  lop4 s, T,= 
l . l x 1 0 - 8 s a n d  TL/Tc=6x10-5.  

3. Experimental details 

3.1. Sample characterisation and preparation 

The large polystyrene spheres were prepared by Professor R H Ottewill and colleagues 
at Bristol University. The particle size was determined by Mie scattering. The data 
points in figure 1 show a measurement of the angular dependence of the average 
intensity of vertically polarised light (Ao = 4762 A) scattered by a sample of the spheres 
suspended in water in a cell of square 1 cm x 1 cm cross section. The full curves in figure 
1 are theoretical Mie scattering curves (e.g. Kerker 1969) adjusted by an arbitrary 
amplitude factor to fit the maxima in the data around I9 = 90". The parameters m and (Y 

used in these calculations are indicated in the figure: m is the refractive index of the 
particles relative to that of the liquid and 

(Y = 2.nRnIAo. (3.1) 
The most noticeable difference between experiment and theory in figure 1 concerns the 
depths of the minima. The smaller experimental depths are almost certainly caused by 
multiple scattering which adds a background light level showing less angular structure 
than the single-scattered light. (The particular sample used, which was only intended 
for a rough measurement, transmitted only about 36% of the incident intensity.) Two 
features of the theoretical curves were found to be particularly sensitive to variations in 
CY and m : the depth of modulation around I9 = 50" and the 'shoulder' at 8 = 98". After 
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: 15 

Scattering angle 6 ideql 

Figure 1. Particle sizing from Mie scattering profile. Logarithm of average intensity ( I )  is 
plotted against scattering angle 8. The same set of data (points) is compared with three 
theoretical profiles (continuous lines, ct is size parameter (3.1), m is relative refractive 
index), displaced vertically for ease of presentation. Middle curve is judged to give best fit. 

generating many theoretical curves for different a and m, we judged visually that the 
central curve in figure 1 fits the data best and therefore take cy = 29.8*0.3 and 
m = 1.19*0.05. Use of (3.1) with n =1.339 then gives, for the particle radius, 
R = 1 . 6 9 ~ 0 . 0 1 7  pm. 

We also tried averaging together theoretical curves over a range of a values to assess 
possible effects of polydispersity (a distribution of particle size). None of these, 
admittedly crude, attempts led to a better agreement with the experimental points. We 
conclude that the particles are virtually monodisperse with a standard deviation in 
particle size certainly less than 3% of the mean. 

The samples used for photon correlation spectroscopy were prepared as follows: the 
concentrated stock suspension was shaken and allowed to settle for a few hours so that a 
boundary existed between clear water and the remaining suspension. A drop of 
suspension was withdrawn from just below the boundary in the hope that any aggre- 
gates or other impurities would have settled out of this region faster than the particles of 
interest. This drop of suspension was added to the sample cell which contained a well 
filtered (0.22 pm, Millipore) mixture of light and heavy water (or, in one case, just H20,  
0 5.4). The cell was shaken and excess suspension expelled by filtered air so that the 
final column of fluid was less than 1 cm high. The quartz sample cell had external cross 
sectional dimensions of 1.2 x 1.2 cm2 and internal dimensions of 1 x 0.2 cm2. 
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When the scattered laser light was observed by eye, samples prepared in this way 
appeared quite clean. Occasionally a scintillating speck (‘dust’) was observed, parti- 
cularly at angles corresponding to minima in the Mie pattern (where the genuine 
scattering was weak). One sample was used for about a week and appeared slightly 
dirtier at the end of this time. Nevertheless we estimate that the intensity of the light 
scattered by dust was less than 1% of that scattered by the particles: no time-dependent 
degradation of photon correlation results was observed. 

Particle number densities were estimated by using one of the simpler results of Mie 
scattering theory, namely that large enough particles have a total light-scattering cross 
section equal to twice their physical cross section ?rR2 (e.g. Kerker 1969, p 104). For 
such particles it is straightforward to show that the fraction of incident light transmitted 
by a column of suspension of length 1 is exp(-I/L) where the attenuation length L is 

L = (2?rR2N)-l (3.2) 
and N is the number of particles per unit volume. The samples used in this work had 
attenuation lengths in the range 2-3 cm corresponding to N = 2.7 x lo6- 
1.9 x lo6 ~ m - ~ .  Thus a scattering volume of cm3 (§ 3.2) contains 2-3 x lo3 parti- 
cles. 

3.2. Optics 

Figure 2 shows the optical arrangement for the experiment. The light source was either 
a Spectra Physics model 164 Ar’ ion laser or a Coherent model 500 K Kr’ ion laser. 
The output power was typically 50-100 mW, stabilised by built-in feedback loops. 

Water 
bath 

Figure 2. Plan view of optical arrangement. Laser beam is weakly focused by lens L1 
through aperture A1 into sample contained in water bath. Lens L2 images sample cell onto 
vertical slit S1. Scattered light is collected by photomultiplier tube through ‘coherence’ 
aperture A2. 
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Intracavity circular apertures prevented the operation of transverse cavity modes so 
that spatial coherence of the output beam was assured. The laser beam was weakly 
focused (to obtain the necessary light intensity in the sample) with a lens L1 of focal 
length about 35 cm. The sample cell was placed with its short internal dimension 
(0.2 cm) parallel to the beam at a point about 8 cm from the beam focus where the beam 
diameter was about 0.1 cm. The cell was surrounded by a blackened aluminium block 
with slots to allow the entrance and exit of the light. The cell/block combination was 
immersed in a lagged cylindrical water bath of diameter about 15 cm and capacity about 
3 1. Room temperature was controlled to 19.5 f 0.3 "C, but the water temperature was 
not controlled separately. Typically the latter varied at a rate less than 0.05 "C h-l. We 
felt this arrangement (small sample cell, aluminium block, large water bath) would be 
effective in minimising temperature gradients across the cell which could lead to 
convection. 

The detection optics were mounted on a massive optical bench able to rotate about 
the axis of the water bath. The region of sample illuminated by the laser was imaged 
1 : 1 by lens L2 onto a vertical slit of width 0.1 cm which served to discriminate against 
light scattered by the cell walls. The volume of sample 'seen' by the detector was thus 
about cm3, defined by the slit and the beam profile. The sample cell was mounted 
so that it could be moved in three orthogonal directions relative to the bath. After each 
change of scattering angle the cell was moved up and down the laser beam while the 
detected intensity was monitored. This allowed the image of the cell to be centred on 
the slit. The cell was always placed so that the illuminating beam was close to the exit 
(side) window of the scattered light (see figure 2). With this arrangement it was possible 
to make reliable measurements for scattering angles in the range 60 d 0 s 120". The 
actual value of 0 was always chosen to coincide with a maximum in the Mie scattering 
profile, thus ensuring high single-scattered intensity and discriminating against dust and 
multiple scattering (see § 6.7). Uncertainty in the scattering angle was estimated as 
f 0.2". 

3.3. Electronics and data analysis 

The detector was an ITT FW130 photomultiplier tube operated in the photon-counting 
mode. It was preceded by a circular aperture of diameter 200 pm placed about 60 cm 
behind the slit. The scattered light was nearly coherent across this aperture so that the 
constant c (§ 2.1) always had a value of about 0.8 or above (see e.g. figure 3). 

The standardised photomultiplier signal was fed to a Malvern 'one-bit' digital 
correlator operated in the single-scaled mode. The correlator had 88 channels cor- 
responding to delay times T = pTs ( p  = 1 to 88, Ts is the sample time) and four channels 
at delay times 345Ts to 348Ts. The correlator was interfaced to a Hewlett-Packard 
9830 computer which could be used to control a sequence of experiments as well as for 
data analysis. Data were usually accumulated in the form of many experiments of 
typical duration 103s. The data for each 103s experiment were normalised by the 
'accidental' correlation rate ((1)' in equation (2.1)) calculated from the total numbers of 
sample times, scaled counts and unscaled counts accumulated in separate monitor 
channels. (A check of the validity of this procedure is described in § 6.1.) Normalised 
data sets, g'*'- 1, could then be averaged to give an effective experimental duration of 
as long as 28 h (table 1). 

Photon counting rates were kept around lo5 s-', low enough that dead-time effects 
are small but large enough for reasonable counting statistics. 
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X 
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-013 
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- 3  

(Quadratic f i t  1416)) 

RMS deviation = 4 3x10-' 
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. ... 
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-2 aw, deviation = 3 8 x  IO-' - 

x10-42 
0 

-2 

Figure 3. Log correlation functions, ln[c"*g"'(K, T ) ] ,  showing marked long-time tail 
effects (8 4) for four different sample times TS (as indicated). Uppermost curve (displaced 
vertically) in each figure is from a single experiment of duration lo3 s. Second curve is result 
of averaging many such experiments (see text). Bottom three curves are residuals (data 
point -fitted function) for the fit to theoretical linear, quadratic and 'long-time tail' 
expressions (4 ,1a)-(4.1~) .  The root mean square deviations per poinf are also shown for 
these fits. In all cases the long-time tail expression (bottom curve) fits best. The full curves 
in the top residual plots are equation (4.3), the theoretical prediction for the force fit of data 
showing long-time tail effects to a linear function. 

From equations (2.2) and (2.6) we see that a measurement of gC2'-- 1 provides an 
experimental estimate of c(g('))' and that 

&ln(g '2 ' -1)=&lnc+ln g " ' = ~ l n ~ - ~ K ' ( A ~ ~ ( ~ ) ) .  (3.3) 
In the data analysis t ln(g"' - 1) was fitted by linear least-squares programs to various 
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Table 1. Data analysis for figure 3. 

Coefficients of fits (4,la)-(4,1c); standard deviations in parentheses 

Sample 
time T~ 

Tc 

2 0.019 

5 0.048 

10 0.097 

20 0.194 

Number of Linear ( 4 . 1 ~ )  
experi- a (cm2 s-‘) 
ments 

83 x io3 i . o i o ~  1 0 - ~  
(23.1 h) (0.002) 
103 x lo3 s 1 . 0 3 7 ~  
(28.6 h) (0,001) 

(12.8 h) (0.001) 

(7.5 h) (0.001) 

4 6 ~  io3 1.061 x 1 0 - ~  

27 x io3 1.073 x 1 0 - ~  

Quadratic 
a (cm’ s-’) 

(4.16) 
b (cm2 s-*) 

Long-time tail ( 4 . 1 ~ )  
a (cm2 s-’) d (cm2 s-l’’) 

0.946 X lo-’ 
(0.005) 
0.996 x 
(0.002) 
1.031 X 

(0.002) 
1.056 X lo-’ 
(0.001) 

-34.9 x 
(2.6) 

-9.55 x 
(0.56) 

-3.38 x lo-* 
(0.2) 

(0.07) 
-1.02x lo-* 

1 . 1 0 7 ~ 1 0 - ~  
(0.006) 
1.098 X 
(0.002) 
1.104X 
(0.002) 
i . i o o ~  1 0 - ~  
(0.002) 

1.69 x lo-’’ 
(0.11) 
1.58 x 
(0.05) 
1.57 x 
(0.03) 
1.36 x 
(0.04) 

trial functions which included both theoretical models for ( A x 2 ( 7 ) )  and functions which 
allowed for some of the more common systematic errors (see 9 8  4 and 6 ) .  In these 
analyses the data points were weighted according to the procedure of Pusey et a1 
(1974). Two approaches were taken to the data analysis: firstly data from the individual 
lo3 s experiments were fitted to the trial functions and the coefficients obtained from 
many such experiments were averaged to give their mens and standard deviations. 
Secondly the data sets were averaged first, as outlined above, and the result was then 
analysed. The mean values of the coefficients obfained by these two procedures agreed 
very well in all cases. However the estimated standard deviations differed occasionally 
by as much as a factor of two. In § §  4 and 5 the values of standard deviation quoted are 
the larger of the values obtained in the two analysis procedures. 

4. Results showing marked long-time tail effects 

The largest amount of experimental data was obtained from a sample of number density 
N ~ 2 . 7  x lo6 cmW3 ( Q  3.1) in a D*O/HzO mixture at scattering angle 8 = 118”, with 
sampling times Ts = 2 ,  5 ,  10 and 20 ps (much smaller than Tc, Q 2.3) and the ho = 
4579 A argon laser line. It is under these conditions of short sampling times and large 
scattering vector that long-time tail effects should be most visible (Q 2.3). 

In figures 3(a)-(d) logarithms of the measured field correlation functions, 
3 ln(g‘*’- l ) ,  are plotted as a function of delay time for the four sample times. The 
uppermost traces in each figure are for a typical single lo3 s experiment whereas the 
lower traces show the results of averaging the number of experiments listed in table 1. 
With a counting rate of lo5 s-l the average photon number ( n )  per sample time is, for 
Ts = 10 p s, about one. This is the optimum condition for good counting statistics and 
these are evident in figures 3(c) and 3(d). For Ts = 5 and 2 ps, ( n ) <  1 and more 
statistical error is evident in figures 3(a)  and 3(b), exacerbated by the smaller vertical 
differences between points (note the different vertical scales in figures 3(a)-(d)). 

In all cases the log correlation functions show a downward curvature although this is 
not a striking effect when the data are presented in this form. Accordingly we also show 
in figures 3 the residuals (data point - fitted function) for the fit to three trial functions 
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(see equations (3.3), (2.14) and (2.15)): 

linear In c ‘ I 2  - K2ar ( 4 . 1 ~ )  

quadratic 

‘long-time tail’ 

In c1/’ - K2(ar - b?) 

In c ’/’- K2(ar  - drl”). 

(4.lb) 

( 4 . 1 ~ )  

The quadratic expression is chosen since a number of experimental artefacts are 
expected to result in functions of this form (§ 6). When fitting the Ts = 2 ps data the first 
three points were omitted since they appear to show systematic deviations probably 
associated with photomultiplier tube afterpulsing (§ 6.1). Also given in figures 3(a)-(d) 
are the RMS deviations (per point) between data and fit, a criterion of ‘goodness of fit’. It 
is immediately apparent (especially in figures 3(b)-(d), where statistics are reasonably 
good) that only the ‘long-time tail’ function gives an adequate fit of the data when 
judged in terms of both lack of structure in the plots of residuals and the RMS deviations. 

In table 1 we list the coefficients a, b and d, along with their standard deviations 
(9 3.3), obtained from the fits. The validity of fit ( 4 . 1 ~ )  is confirmed by the fact that only 
in this case are the coefficients obtained more or less independent of the sample time Ts 
used. 

Two other types of fit were also tried: 

‘second-order long-time tail’ In c1 /2 -K2(a r  -d r1 /2 -er -1 /2 )  (4.ld) 

(4.le) long-time tail and quadratic 2 1/2  Jn c1/’ - K2(ar - br - d.r ). 

For Ts = 2, 5 and 10 ps neither (4.ld) nor (4.le) gave a significantly better fit than 
( 4 . 1 ~ ) .  However for Ts = 20 ps, both (4.ld) and (4.le) showed significant 
improvements. It is unlikely that the T - ~ / ~  term in (4 .14  will be important at Ts = 20 ps 
if it is not detectable at smaller Ts, However a r 2  term, evident at larger Ts, can, as 
mentioned previously, be caused by various experimental artefacts (§ 6). For Ts = 
20 ps fit (4.le) gives a coefficient d = 1.70+ 0.1 X lo-’’ cm2 s-ll2 which brings it into 
line with the values obtained at shorter sample times (table 1). 

The values obtained for the coefficients a and d can be compared with the theory 
(§ 2.2). The coefficient a should simply be D, the long-time diffusion coefficient of the 
particle (equations (2.6) and (2.14)). Unfortunately, due to uncertainties in the sample 
preparation, the composition of the D20/H20 mixture was not known exactly though 
we believe it to be about 40% D 2 0  by volume. Without incurring significant error we 
take the refractive index of the mixture to be n = 1.339, that of pure water at 
A 0  = 4579 A. This gives K 2  = 9.92 x 10” cm-’ (equation (2.4)) at 8 = 118”, a result 
which has already been used when calculating the coefficients quoted in table 1. We 
assume that the density p and viscosity T of the mixture are linear combinations of those 
of its constituents. Taking pD20 = 1.105 g cm-3 and q D 2 0  = 1.23 cp at 19.5 “C (Smith- 
sonian Physical Tables 1964, p 320) we get p = 1 . 0 4 2 g ~ m - ~  and 77 = 1.10 cp. 
Averaging the data for T = 2 ,  5 and l o p s  (where ( 4 . 1 ~ )  gives the best fit) gives 
D = 1.101 f 0.004 x lo-’ cm2 S - ’ S O  that, from equations (2.8) and (2.10), the apparent 
particle radius is R = 1.770*0.006 pm. This is to be compared with R = 
1.69*0.017 pm obtained from the Mie scattering profile (8  3.1). The error quoted for 
the light scattering radius is just the run-to-run statistical error. Systematic error 
associated with uncertainty in the composition of the D20/H20 mixture could be as 
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much as 2%.  Thus the difference between the radii values determined by these two 
methods is about 4.5’10, roughly twice their estimated combined error (see below). 

The theoretical expression for the coefficient d is (equations (2.6), (2.13), (2.14) and 
( 4 . l c ) )  

dth = k T p ’ / ’ / 3 ( ~ q ) ~ / ~  (4.2) 

so that for T, p and 77 as given above, dth =2.14x  cm2 s - ~ ” .  This is to be 
compared with the value d = 1.58* 0.05 x lo-’’ cm2 s-”* obtained by averaging the 
experimental results (weighted by the inverse of their variances) for Ts = 2, 5 and 
10 ps. Thus the experimental value is only about 7 4  * 3% of the theoretical value, and 
the difference between the two is many times the estimated statistical error in the 
measurement. 

Possible sources of systematic error in this type of light scattering experiment are 
discussed in § 6. There are several effects (e.g. heterodyning, dust and dimerisation) 
v;hich could lead to a reduction in the coefficient a and hence an apparent increase in R 
of the magnitude found above (-4.5%). However all of these are expected to give a 
similar reduction in the coefficient d of the 7l’’ term. The much greater reduction 
observed must therefore either be caused by some unconsidered systematic error or 
indicate a real failing of the theory outlined in § 2 (see § 7). 

A more direct way of presenting the data is to perform a numerical differentiation of 
the curves shown in figures 3(a) - (d)  to obtain the time-dependent diffusion coefficient 
D(7) for direct comparison with equation (2.17). This is shown in figure 4. The 
differentiation was accomplished by taking sets of j consecutive data points and 
performing a least-squares fit of their logarithms to a linear function of 7. D ( T )  was then 

Figure 4. Data points are ‘time-dependent diffusion coefficient’ (2.16) obtained by 
numerical differentiation of data of figure 3. Full curve A is the theoretical prediction for an 
exponentially decaying (2.9) velocity autocorrelation function i.e. no long-time tail. Curve 
B is equation (2.17), the theoretical prediction incorporating long-time tail effects. While 
differences between experiment and theory are evident the data clearly support the 
existence of a long-time tail. 
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obtained from the slope of this line; T was taken to be the delay time corresponding to 
the central point of the set. The optimum number j for each sample time was chosen 
visually to give the best compromise between statistical error for too small j and 
systematic error for too large j .  The values of j used to obtain figure 4 were 20 for 
Ts = 2 ,us, 14 for Ts = 5 ,us, and 10 for Ts = 10 and 20 ,us. 

The data in figure 4 are compared with two theoretical cruves A and B taking 
R = 1.69 pm and other parameters as given above. Curve A is (2.16) with the 
exponentially decaying velocity autocorrelation function (2.9); this curve clearly does 
not fit the data which therefore implies a much slower decay in q5 ( t ) .  Curve B is the first 
two terms of the theoretical ‘long-time tail’ prediction (2.17). The data follow the 
general shape of this curve though the differences mentioned above between experi- 
ment and theory are evident. It should be emphasised that (if the radius determined by 
Mie scattering is taken to be correct) there are no adjustable parameters in this latter 
comparison. (At first sight it appears from figure 4 that there is agreement between 
experiment and theory for T f 5 x lo-’ s; however, in terms of the least-squares analysis 
given above, a more likely explanation of this apparent agreement is an ‘accidental’ 
cancellation of the effects of the differences between the theoretical and experimental 
values of d and D for this particular range of T. )  Addition of the third term in (2.17) to 
curve B made a barely detectable difference, thus confirming its undetectability in our 
measurements. 

Finally we note that the (unweighted) least-squares fit of a function of the form of 
( 4 . 1 ~ )  to a straight line can be performed analytically (in integral rather than summation 
form) with the result 

Residual = K2d[T1/’ - - $(T/  T;” )] (4.3) 

where TT=88Ts is the total delay time spanned by the 88 correlator channels. 
Equation (4.3), with the theoretical value of d (4.2), is plotted as the full curves in figure 
3. As expected from the discussion above, the data residuals show the same general 
form as (4.3) indicating the presence of a T ~ / *  term in ( A x ’ ( T ) ) .  However their 
magnitudes are clearly only about 75% of the predicted values (see figure 3(c) in 
particular). 

5. Supplementary data 

5.1. Introduction 

Although the data presented in § 4 are more or less consistent within themselves it is 
important to check the overall validity of our approach by making further measure- 
ments under a range of experimental conditions. The supplementary data reported in 
this section include measurements made at longer delay times, at smaller scattering 
vectors and a few experiments on particles suspended in 100% H20. 

5.2. Long delay time, D20/H20 mixture, 8 = 118” and ho = 4579 A 
First we discuss measurements made on the same sample as those reported in § 4 under 
the same experimental conditions except only that the correlator sample time Ts was 
300 ps. Thus the total time spanned by 88 channels was about 3Tc. Thirty seven 
experiments of 600 s duration were performed. Figure 5 shows semilogarithmic plots 
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Figure 5. Data obtained under same conditions as for figure 3 except at much longer sample 
time T, = 300 ps (P 5.2). Curves A and C (displaced vertically) are for single experiments of 
duration 600 s. Curve B is the average of 37 such experiments. 

of two typical individual experiments (curves A and C) and of the average of all 37 
experiments (curve B). The results of fitting this average to the trial functions of 
equations (4.la)-(4.lc) and (4.le) are given in table 2. Here we also quote the familiar 
normalised second cumulant Q, 

Q 3 2 b / K 2 a 2 ,  (5.1) 
which is twice the coefficient of the T* term in Ing"' divided by the square of the 
coefficient of 7 (Pusey et a1 1974). 

The positive second cumulant Q and negative value for d in fits (4.lb) and ( 4 . 1 ~ )  
indicate an overall upward curvature in In g") though this is barely significant. Fit (4.le) 
gives a value of D in good agreement with that obtained at shorter times (§ 4); also the 
value of d obtained in this fit is not inconsistent with that obtained previously though the 
statistical error is much larger. 

Table 2. Data analysis for figure 5, Ts = 300 ps, 88Ts/Tc-2.9, 37 x lo3 s experiments (10.3 h 

~ 

Coefficients of fits (4.la)-(4.lc) and (4.le) 

Linear (24a) Quadratic (4.lb) 

a (cm2 sC1) a (cm2 s-') Q = 2b/K2a2 a (cm2 s-') d (cm2 s-l") a (cm2 s-') Q d (cm2 s-'") 

1.089 x 1.094 x 0.01 1 . 0 8 4 ~  lo4 -0 .6X lo-'' 1.113 x 0.019 1 . 4 0 ~  lo-'' 

Long-time tail ( 4 . 1 ~ )  Long-time tail +quadratic (4.le) 

(0.002) (0.004) (0.007) (0.023) (1.1) (0.03) (0.03) (1.70) 
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The averaged correlation function in the last four delayed channels (§ 3.3) was 
1,0007 i 0.0003, to be compared with the theoretical value of essentially 1.0000. This 
indicates a small unimportant effect due probably to a changing mean count rate 
associated with number fluctuations (0 6.4). 

Thus these long-delay-time data are almost completely consistent with the data 
described in 5 4 and give no indication of serious systematic error which could affect the 
latter measurements. 

5.3. Smaller angle, 8 =.ti64 DzO/HzO mixture, ho = 4579 A 
A few measurements were made on the same sample as that used hitherto but 
at scattering angle 8 = 66" (where K 2 =  4.006 x 10" cm-2 as opposed to 9.921 
x lo1' cm-* at 6 = 118"). The results of the analysis of these data are given in table 3. 
At short sample times Ts = 5 and 10 ps it was again found that equation ( 4 . 1 ~ )  gave the 
best fit. The value of D obtained in this way was about 1.9% greater than that found at 
8 = 118". This difference is within the expected combined systematic error composed of 
temperature and angle uncertainty ( 9  3.2) and back reflections from the cell walls 
(§ 6.5). The coefficient d of the T ~ / ~  term shows (as expected, § 2.3) a larger statistical 
error than at 8 = 118" but is otherwise in excellent agreement with the large-angle 
value. 

The semilogarithmic plot of the average of the correlation functions obtained at 
large sample time Ts = 700 ps showed a small but distinct upward curvature described 
by the positive second cumulant Q in the quadratic fit. The reasons for this long-time 
non-linearity were not determined unambiguously but probably include a combination 
of the effects described in § 6. 

Table 3. Data analysis for 5 5.3. 

Coefficients of fits (4.la)-(4.lc) 

Sample Linear (4.1 a )  Quadratic (4.lb) Long-time tail ( 4 . 1 ~ )  
time Ts 88T, Number of 
(PSI T~ experiments a (cm2 s-') a (em's-') Q a (cm2 s-l) d (cm2 s - " ~ )  

5 0.019 41 x io3 1.065 x 1 0 - ~  1.021 x 1 0 - ~  -4.67 1.125 x 1 . 6 0 ~  
(11.4 h) (0.003) (0.004) (0.40) (0.004) (0.11) 

( 5  h) (0.004) (0.003) (0.02) (0.005) (0.12) 

(5.1 h) (0.007) (0.01) (0.01) (0.03) (2) 

10 0.039 18 x lo3 s 1.075 X 1.045 x -1.53 1 . 1 1 8 ~ 1 0 - ~  1 . 6 2 ~ 1 0 - l ~  

700 2.7 26 x 700 s 1.059 x lo-' 1.085 x 0.044 1.019 x -7.3 X lo-'' 

Long-time tail +quadratic (4.le) 

a (cm2s-l) Q d (cm2 s - ~ ' ~ )  

1.083 X 0.043 -0.22 x 
(0.04) (0 .O 3 0) (2.0) 

5.4. Pure water, A. = 6471 A, 8 = 116" 

Finally measurements were made on a slightly more dilute sample ( N  = 1.9 X lo6  ~ m - ~ )  
of particles suspended in pure water using the 6471 A line of the Krt laser and a 



3316 G L Paul and P N Pusey 

scattering angle 6 = 116” ( K 2  = 4.805 x 10” cm-2). The data analysis and other 
experimental details are summarised in table 4. Two different laser intensities were 
used in these measurements providing counting rates of about 8 x  104s-’ and 
4 x lo4 s-’. It is evident that the fitted coefficients are all slightly lower at the lower 
counting rate though the difference is barely significant. 

Table 4. Data analysis for 9: 5.4. 

Number of Coefficients of fits 
experiments 

Sample Linear Quadratic Long-time tail 

( P E )  Tc rate a (cmZ s-l) a (cm‘ s-l) Q a (cm2 sC1) d (cm2 s - ~ ’ ~ )  

time T, 88T, counting ___- 

10 0.047 12x103s 1 . 1 6 0 ~ 1 0 - ~  1.128X10-9 -1.185 1.205 x 1.69 x I.O-” 
~- (3.3 h) (0.003) (0.003) (0.13) (0.007) (0.15) 
8 x 1 O4 sC1 

10 0.047 13x2000s 1.144xlO-’ 1 . 1 1 3 ~ 1 0 - ~  -1.17 1 . 1 8 3 ~  lo-’ 1 . 4 8 ~  
(7.2 h) (0.004) (0.004) (0.14) (0.005) (0.19) 
4 x io4 s-l 

Quadratic Long-time tail + quadratic 
_I 

a Q a Q d 

500 2.33 4 ~ 1 0 ~ s  1 . 1 7 5 ~ 1 0 - ~  0.058 1.187 x 0.063 1.35 x lo-’’ 
(1.1 h)  (0.005) (0.012) (0.04) (0.02) (0.53) 
8 x 1 0  s - 7 - T  

500 2.33 4 x  103s 1.161 0.034 1.160x lo-’ 0.036 0.3 x 
(1.1 h) (0.005) (0.01 7) (0.04) (0.03) (1.0) 
4 x io4 s-l 

At short sample times Ts = 10 ps equation ( 4 . 1 ~ )  was again found to give the best 
fit. The particle radius obtained from the diffusion coefficient for these short-time 
measurements was R = 1.77* 0.02 (equations (2.8) and (2.10), taking T = 19.5 “C and 
77 = 1.014 cp). This is in excellent agreement with the value obtained in the D20/H20 
mixture and confirms our estimate of the composition of this latter mixture. The 
experimental value of d,  the coefficient of the T ~ ’ ~  term in (4 . lc ) ,  is 68 * 7% of the value 
d = 2.37 x cm2 s-l” predicted theoretically (equation (4.2)),  just in agreement 
with the more precise measurements reported in § 4.  

At longer sample times, Ts = 500 ps, an upward curvature was found in the 
semilogarithmic plots of the correlation functions as was the case for the data reported 
in § 5.3. 

6. Possible sources of systematic error 

6.1. Electronic distortions 

Because the effects sought in this experiment are so small it is clearly important to 
evaluate any potential source of distortion. A simple but quite comprehensive check of 
the operation of the electronics (photomultiplier tube, pulse standardisation circuitry 
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Duration 10 6 h Counting rate 2 3 ~ 1 0 ~ s ~ '  

1 0 0 0 O ~ ' . . ~ '  -.. .. I .  re. 0. e .  . - 0 ' -  . . 
h 

and correlator system) can be made by illuminating the PMT with light of constant 
intensity. Then the normalised intensity correlation function g"'(7) (equation (2.1)) 
should simply be 1 at all delay times. Figure 6 shows the results of several such 
measurements. The light source was an incandescent bulb powered by large batteries. 
When temporal and spatial averaging is accounted for, residual intensity fluctuations in 
the light are expected to be less than 1 part in lo9;  however undetermined systematic 
fluctuations could be larger. Measurements of duration about 12 h were made at a 
sample time Ts = 5 ps with three different counting rates -2.3 X lo5 s-l, -1 X lo5  s-l 
and -4 x lo4 s-'. 

10005- 

- 
- T 10003- 
%I 

Ourotion 12 2 h Counting ra te  1 x 1 0 ~  5.' *. .....' 0.- .&.*._.. - ..e* .: __... *.. .*. 0 - .  *..*...-- -* 
e- .-. - 0 0  . - e... . 

Average = 1  0 0 0 0 1 4 ~  0000048 [ f i r s t  polnt omitted) 

.' .. . .  
** . . , .. .. _.- . . . * e . .  

.*..... .*.:; -0.. **.. . . *. - 
* *  . ' *- ... * - * *  . .  - . 10000 

Average =1000029t0000090 [ f i r s t  two paints omitted) 0 9995 1 
Figure 6.  Intensity correlation functions g"'(.r) for white light. Sample time was Ts = 5 bs. 
Experimental durations, counting rates, means and standard deviations (per point) are 
indicated. 

Figure 6 shows that, except at short delay times, the correlation functions observed 
are essentially flat so that serious artefacts are not indicated. The means and standard 
deviations (per point) are given in figure 6. In all cases the means exceed the theoretical 
value ofLby slightly more than the expected statistical error (the standard deviation per 
point/J88). However the difference is small. Potentially more serious are the spurious 
correlations, probably caused by photomultiplier tube 'afterpulsing' (e.g. Oliver 1974), 
evident in the first few channels. Such short-time distortions are apparent in the data of 
figure 3 ( a )  and the first three points were omitted in the data analysis (§ 4). No 
distortions are obvious in figures 3(b)-(d)  though, from figure 6, one might expect a 
small effect. Nevertheless we tried omitting the initial points when analysing these data 
and conclude that the effect of any electronic distortions on the fitted coefficients is 
comparable with their quoted statistical errors. 

6.2. Residual flows in the sample 

Some preliminary experiments were performed on samples contained in a large cell 
(internal dimensions 1 cm X 1 cm X -2 cm high). We frequently found that the semi- 
logarithmic plots of the field correlation functions obtained with these samples showed 
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a marked downward curvature which was not reproducible in different experiments. A 
force fit of these plots to a straight line (equation ( 4 . l a ) )  invariably gave an effective 
diffusion constant greater than that predicted by the Stokes-Einstein equation. We 
attribute this effect to residual flows in the sample caused, probably, by convection. 
Since genuine long-time tail effects also lead to downward curvatures in the semi- 
logarithmic plots it is important to understand artefacts due to residual flows. 

It can be shown that any velocity gradient in the scattering plane caused by processes 
other than Brownian motion is problematic. For simplicity we assume that the particles 
in the scattering volume are divided into two equal groups which move relative to each 
other in the flow with a component AV of velocity difference in the direction of the 
scattering vector K. It is then straightforward to show that, in the presence of Brownian 
motion, this simple model leads to an effective field correlation function 

C1/2g(1)(K, 7 )  3 (g‘2’(K, T )  - 
= c 1/2 exp( --4K2(Ax2(7)))(3+i cos K A u T ) ” ~  

so that 

In g “ ’ ( ~ ,  T )  = - $ K ’ ( A X ~ ( T ) )  - $ ( K A w ) ~  + . . .. (6.1) 
Thus residual flows in the sample introduce a negative T2-dependent term at small delay 
times (and hence the aforementioned downward curvature). In the absence of long- 
time tail effects we have 

In g ‘ l ’ ( ~ ,  T )  = - D K ~ T - ~ ( K A ~ T ) ~ + ,  . . (6.2) 

with an effective time-dependent diffusion coefficient (obtained by differentiation of 
(6.2)) given by 

D ( T ) = D + $ A ~ ~ T + .  . .. (6.3) 
In general the flow pattern will be more complex than that considered here. Neverthe- 
less, provided that the local flow velocity leads to motion over a distance large compared 
with 27rK-I ( s 0.5 p m )  before its nature changes significantly, it can be shown that the 
functional form of equations (6.2) and (6.3) holds (Fuller et a1 1980). 

As discussed in § 4 ,  the data shown in figures 3(a ) - (d )  are not described well by 
equation (6.2) (or equation (4.1b)).  In addition the data for D(T) presented in figure 4 
do not show the linear increase with T predicted by (6 .3 ) .  We conclude, therefore, that 
our efforts to eliminate residual flows by using a small sample volume and large water 
bath (§ 3.2) were successful. This claim is supported by the observation of a fairly sharp 
horizontal boundary between dispersion and clear water as the particles sedimented. 

6.3. Sedimentation 

Even when residual flows have been eliminated there will, in general, be a coherent 
motion of the particles due to sedimentation. If this motion is strictlyperpendicular to 
the scattering plane, extra fluctuations in the scattered intensity will be caused purely by 
the changing population of particles in the scattering volume. It can then be shown 
(Jakeman 1975) that, if the laser beam has a Gaussian profile, the effective field 
correlation function is 

g‘’’(K, T )  = exp( - $ K 2 ( A x 2 ( ~ ) ) )  exp[ - i ( ~ /  Ts,d)2] (6.4) 

so that, again, a negative T2-dependent term appears in In g“). The characteristic time 
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Tsed is given by Tsed = WO/vsed  where WO is the radius of the laser beam at its focus and 
Used  is the sedimentation velocity: 

U s e d =  2R2Ap&?/9T (6.5) 

where the density difference Ap = p p - p  and g is the acceleration due to gravity. For 
the optical arrangement of figure 1, WO = 30 p m  and, for polystyrene particles (pp = 
1.055 g ~ m - ~ )  of radius 1.77 p m  suspended in water, osed=3.8 x lo-’ cm s-’ (1 cm in 
about 7.5 h). Thus Tsed = 80 s and, even at T = 7 x 10-2s (the longest delay time used 
here), the effect of sedimentation is entirely negligible. 

The decision to use a D20 /H20  mixture to reduce sedimentation was made prior to 
the above calculations which indicate a negligible effect. It was nevertheless advan- 
tageous in providing a sedimentation rate of less than 1 cm per day so that more 
frequent shaking of the sample to redisperse the particles was not necessary. 

6.4. Heterodyning, number fluctuations and dust 

In this subsection we consider three possible sources of error which, although different 
in nature and cause, can be treated in a single calculation. We take the measured 
intensity correlation function (normalised as described in § 3.3) to be of the form 

(6.6) g‘2’(K, T )  = 1 + c (exp(-2 Y )  + x exp(- Y )  + B )  
where 

Y = K2(t17 - dT1’2) (6.7) 

(cf equation ( 4 . 1 ~ ) ) .  The constants x and B are assumed to be small compared with 
unity. In the case of heterodyning some light scattered elastically by, for example, the 
cell walls is detected. This light can mix coherently with the genuine scattered light 
giving rise to the second term in brackets in (6.6); for pure heterodyning B = 0. If the 
number of particles in the scattering volume changes significantly (but slowly) during an 
experiment the result is the term B in (6.6), taken to be time-independent for slow 
enough variation. A fluctuating number of slowly moving dust particles contributes to 
both second and third terms in the brackets in (6.6) (Cummins and Pusey 1977). 

Expansion of the exponentials in (6.6) leads to an effective field correlation function 
given by: 

In g“’(K, ~ ) = : l n [ c ( l + x + B ) ] - K ~ ( a ~ - - d ~ ~ / ~ ) ( l - & ~  - B )  

+K4(a2.r2 - 2 ~ d . r ~ ’ ~  + d2T)(ax + B )  + . . .. (6.8) 

For values of a and d relevant to this experiment, it can be shown that the d2.r term is 
always negligible and that the a 2 T 2  term is always larger than the 2 a d ~ ~ ”  term when 
they are not both negligible compared with a7 - dT’”. Thus the two main effects of 
heterodyning, number fluctuations and dust are (i) that the T and T * ’ ~  terms in In g“’ are 
reduced by the same fractional amount and (ii) that a positive T2-dependent term 
becomes appreciable; the second cumulant (see equation (5.1)) associated with this 
term is Q = ($x + 2 B ) .  

Some remarks concerning the expected magnitude of number fluctuations are in 
order here, Our sample preparation procedure, which involves shaking a diluted stock 
dispersion (D 3,1), is unlikely to produce a uniform number density of particles. The 
time taken for uniformity to be achieved throughout the sample by diffusion is many 
days so that density variations on the scale of the scattering volume which remain when 
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residual flows in the sample have ceased are essentially 'frozen in'. The main cause of 
fluctuations in the number of particles in the scattering volume is then sedimentation. 
The time taken by a particle to sediment through the laser beam in a 40% D2O/6O% 
HzO mixture is about lo4 s (10 experiments of lo3 s duration). Thus the population of 
particles changes by only about 10% during a single experiment. These rough 
calculations are supported by analysis of the total photon count (proportional to the 
number density) during 36 consecutive lo3 s experiments. The average run-to-run 
variation in count was about 3% whereas the difference between the largest and 
smallest count observed was about 40%. We conclude therefore that large number 
density variations (of magnitude much greater than unavoidable Poisson variations 
expected with an otherwise uniform density) are frozen in but that the variation in 
number of particles in the scattering volume during a single lo3  s experiment is about 
3%. The constant B in equation (6.6) is the square of the relative number fluctuation so 
that we expect B < 0.0009. This prediction is confirmed by the observation (§ 5 . 2 )  of a 
long-delay-time value of g '2 ' (T )  of 1.0007. Thus the considerations of this section, 
combined with the small expected and observed values of B, indicate that the effect of 
number fluctuations should be negligible in our experiments. 

If B = 0, equation (6.8) applies to the case of pure heterodyning. Then, taking 
x = 0.08, for example, gives an apparent reduction in diffusion coefficient a of 4% 
(roughly the difference observed between experimental and theoretical values (§ 4)) 
and a second cumulant 0 of 0.04. 

6.5. Back refieetions 

With the optical geometry of figure 2 (with the sample cell vertical) there will be two 
back-reflected laser beams from the sample (water)-glass and glass-water bath inter- 
faces of combined intensity 0.72% of the intensity of the main beam. The detector will 
therefore receive a small additional signal scattered by the sample at the complemen- 
tary scattering angle 8' = 180" - 8. The extra distance, about 1 cm or less, travelled by 
the back-reflected beams is less than the expected coherence length of the laser light so 
that the main and additional signals will mix coherently. Thus we have 

y2 = K;(aT - d T 1 ' 2 )  

and K1 and K2 are the scattering vectors appropriate for scattering angles 8 and 8' 
respectively. Then 

lng'l'(K, T ) =  - [ ( ~ - X ) Y ~ + X Y ~ ] + ~ ~ ( ~ - - X ) ( Y ~ -  y 2 l 2 + .  . . 
2 2  2 2 

= -[(l-x)K:+xK~](a~-d~'/~)+~x(l-x)(K?i-K~) a T +.  . .. (6.10) 

Again the 'i and T ' ' ~  terms are changed by the same fractional amount and a positive T~ 

term is found with a normalised second cumulant of x[ l  - (K&'K:)I2 (for x << 1). 
It is seen from figure 1 that the scattering powers of the particles are similar at 

8 =65" and 8 = 115" so that, for simplicity, we take x = 0.0072. Then for 8 = 118" 
(e' = 62") the T and 7'12 terms are reduced by a factor 0.995 whereas for 0 = 66" 
(e '=  114") they are increased by a factor 1.0099. The associated normalised second 
cumulants are 0.0029 and 0.0135 respectively. 
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6.6. Polydispersity and dimerisation 

As discussed in § 3.1, the Mie scattering results indicate that the degree of poly- 
dispersity of the particles is small, with the standard deviation/the mean, U < 0.03. 
Such a small degree of polydispersity will barely affect the average diffusion coefficient 
and will provide a negligible contribution, of the order of u2, to the second cumulant. 

However particles as large as those used here can, under some conditions, exhibit 
reversible aggregation. The situation when a fraction (assumed small) of the particles is 
in the form of dimers can also be described by equation (6.9) with 

Y1 = K 2 ( m  - dT1/’) Yz = K 2 ( U ‘ T  -d”T1”) (6.11) 

where a’ and d’ are the coefficients appropriate for the dimers. From (6.10) we get 

lng“’(K, ~)=-K~{u~[1-x(~-u’/u)]-d~~~’[1-~(1--d’/d)]} 

+ ~ ~ ~ ~ ( 1 - ~ ) ( ~ - ~ ‘ ) ~ ~ ~ + .  . . (6.12) 

with normalised second cumulant Q = x(1  - - u ’ / u ) ~ .  
We assume the diffusion coefficient a’ of the dimer to be 0.7 times that of the 

monomer, a. Then taking x = 0.1, for example, gives an apparent reduction in diffusion 
coefficient of 3% and a second cumulant Q = 0.009. We note from equation (4.2) that 
the coefficient d of T ~ / ~  is independent of particle radius though, presumably, there is 
some shape dependence. Nevertheless it seems unlikely from the form of equation 
(6.12) that dimerisation would cause a greater reduction in d than in a. 

It should also be mentioned that the dispersion, illuminated by laser light, was 
observed through a microscope. The individual particles were easily resolved and there 
was no evidence of a significant degree of dimerisation or higher-order polymerisation. 

6.7. Multiple scattering 

The theory outlined in § 2.1 and the subsequent data analysis are based on the first Born 
approximation, i.e. on the assumption that double and higher-order multiple scattering 
are negligible compared with single scattering. Two simple indications of the 
importance of multiple scattering in experiments of the type considered here are the 
degree of attenuation of the laser beam by the sample and the amount of depolarised 
scattering. For a weak scattering medium, the fraction F of incident intensity trans- 
mitted by the sample is close to one (if absorption is negligible). The probability of a 
single scattering is then roughly 1 - F and the probability of a double scattering roughly 
(1 - F)’ so that the ratio of the intensities of double and single scattering is also about 
1 - F. When the incident beam is polarised so that its electric vector is perpendicular to 
the scattering plane (as in the present experiments) single scattering by isotropic spheres 
also has this polarisation and depolarised scattering can only arise from multiple- 
scattering events. (Nevertheless, the intensity of polarised multiple scattering may be 
several times that of depolarised multiple scattering (Sorensen et a1 1976).) For the 
sample discussed in § 4 we found 1 - F = 0.1 and the ratio of polarised to depolarised 
intensities at 8 = 118” to be about 0.006. These observations indicate that the fraction 
of the total intensity detected in our experiments which is multiple scattered could well 
be several per cent. 

Even in simple situations the theory of dynamic multiple scattering is quite 
complicated and there appears to have been no theoretical work on large spheres 
showing single-scattering patterns as complicated as that of figure 1. We are thus forced 
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to make experimental estimates of the effects of multiple scattering. To this end photon 
correlation measurements were made on a sample at number density N - 
5.6 x lo6 cm-3 (about twice the concentration of the sample discussed in 0 4) with the 
sample cell in two orientations, with either its long axis (1 cm) or its short axis (0.2 cm) 
parallel to the beam. Multiple scattering is expected to be more important in the former 
configuration since then the beam has travelled further through the sample to the 
scattering volume. 

Table 5 lists the results of these experiments (made at 8 = l l8" ,  A. = 4579 8, and 
T, = 10 ~ s )  and, for comparison, similar experiments already discussed in 08 4 and 5.4. 

Table 5. The effect of multiple scattering. 

Attenuation Relative 
Number length (cm) intensity Depolarisa- 
density (equation at centre tion D d dexp 

Sample Axis ( ~ m - ~ )  (3.2)) of cell ratio (YO) (cm2 s-') (cm2 s-l") dth 
1 Long 5.6x1O6 1.0 0.61 3.8 1 . 1 3 8 ~  lo-' 1 . 8 2 ~  0.85 

1 Short 5 . 6 ~ 1 0 ~  1.0 0.90 1.8 1.115 x lo-' 1 . 4 9 ~  lo-'' 0.70 

2 ( 5  4) Short 2 . 7 ~ 1 0 ~  2.1 0.95 0.6 1.101 x lo-' 1.58X lo-'' 0.74 
3 (8 5.4) Short 1 . 9 ~ 1 0 ~  3.0 0.97 Not measured 1 . 1 9 4 ~  10-9a1.61 x lo-'' 0.68 

(1 cm) 

(0.2 cm) 

a Measured in 100% H20. Multiplication by viscosity ratio for comparison with other values in this table gives 
D = 1.101 x 1 0 - ~  cm2 s- ' .  

For simplicity we show only the coefficients of the 'long-time tail' fit (equation ( 4 . 1 ~ ) ) .  
Inspection of these results shows that, for the three experiments (2-4) for which the 
intensity of the illuminating beam at the centre of the scattering volume is greater than 
90% of the incident intensity, the coefficients a and d (corrected where necessary to the 
same conditions) are the same within experimental error. Thus, although the concen- 
tration in experiment 2 was about three times greater than in experiment 4, there is no 
evidence that the increased multiple scattering (expected also to be about a factor of 
three greater) in the former case has caused significant distortion of the correlation 
function. By contrast, in experiment 1 where a much larger degree of attenuation is 
found both a and d are significantly higher than their low-concentration values. 

For sample 1 the depolarised scattered intensity was strong enough for rough 
measurements to be made of its correlation function. With the long sample axis parallel 
to the beam semilogarithmic plots of the correlation function showed distinct upward 
curvature at large delay times and the effective diffusion coefficient (obtained from the 
initial slope) was as much as 1.5 times greater than the value found for the total 
scattering. In the short-axis configuration the log correlation function at 8 = 66" also 
showed significant curvature though, at 8 = 11 8", the log plot was almost linear with an 
effective diffusion coefficient only about 20% higher than the expected value. 

We conclude that, although some multiple scattering is definitely present in our 
experiments, its effect on the quantities derived from the measurements appears to be 
small. It is nevertheless possible that the positive second cumulants observed may be 
caused, in part, by multiple scattering. 
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6.8. Interparticle interactions 

The number density of the sample discussed in 0 4 was N = 2.7 X lo6 ~ m - ~ .  Thus the 
fraction of the suspension volume occupied by the particles was about 6.3 x lo-’; the 
mean distance between particles was about N-1’3 = 72 pm, some twenty particle 
diameters. It seems extremely unlikely that interparticle interactions would have a 
significant effect in such a dilute suspension. It is, in any case, worth noting that the 
measurements were made at scattering vectors well above those at which significant 
structure, caused for example by long-ranged Coulombic repulsions, would be found in 
the structure factor. Under these conditions light scattering observes effectively 
free-particle diffusion over distances short compared with the interparticle spacing 
(Pusey 1978). 

6.9. Wall effects 

It is well known that particle motions in a fluid are hindered by the presence of a wall 
(e.g. Happel and Brenner 1973). Typically the degree of hindering is of the order of the 
ratio of the particle radius to its distance from the wall. If the image of the slit (figure 2) 
formed in the sample by lens L2 is centred in the cell ( Q  3.2) no particle ‘seen’ by the 
detector should be closer to a cell wall than about 250 pm (about 150 particle radii). It 
is possible however that due to diffraction, defocus or misalignment some particles close 
to the walls could contribute to the detected signal. Nevertheless, the vast majority of 
the particles observed should be effectively unhindered and any wall effects are 
expected to be small. 

7. Summary and discussion 

The important conclusion of this work is that figures 3 and 4 show clearly the existence 
of a long-time tail in the autocorrelation function of the velocity of a Brownian particle. 
Data obtained at short correlation delay times, where long-time tail effects are most 
marked, are summarised in table 6 and are completely consistent within themselves. 
However the experimental amplitude d of the long-time tail term is only about 74 i 3% 
of that predicted theoretically (table 6, last column). When all the data are reviewed 
there are two main indications of systematic errors: (i) the value, 1.76 p m  (after 
back-reflection corrections, § 6.5), of the particle radius calculated from the long-time 

Table 6. Summary of short-delay-time results. 

Coefficient 
d of 

Radius 7’” ( 4 . 1 ~ )  dexp 
TS (ps) 0 (deg) A (A) Solvent D (cm’s-’) ( p m )  (cm2s-1’2) 

04 2, 5, 10 118 4579 60% H20 1.101 x lo-’ 1.77 1 . 5 8 X  lo-’’ 0.74 

0 5.3 5 ,  10 66 4579 60% H20 1.122 X 1.75 1.61 x lo-’’ 0.75 

05.4 10 116 6471 100% H20 1 . 1 9 4 ~  1.77 1.61 x 0.68 

(averaged) 40% D20 (0.004) (0.01) (0.05) (0.03) 

(averaged) 40% D20 (0.005) (0.01) (0.12) (0.06) 

(0.007) (0.01) (0.17) (0.07) 
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diffusion coefficient determined by dynamic light scattering was about 4 i 2% larger 
than that, 1.69 pm, determined by Mie scattering (8  3.1); (ii) measurements made at 
longer delay times (0 5 )  showed a slight upward curvature in the log correlation 
functions (a positive second cumulant). Several commonly encountered systematic 
errors (0 6 )  could explain these findings and it seems likely that the observed dis- 
crepancies are caused by a combination of such errors. Unfortunately the full data 
analysis which revealed these discrepancies was not performed until after completion of 
the experiment so it was not possible to investigate further the individual systematic 
errors. In any case the requirements of the experiment precluded simultaneohs 
minimisation of all sources of error. For example, the use of large particles (for a large 
long-time tail effect, § 2.3) leads to significant multiple scattering which can only be 
minimised by use of a small sample volume, a requirement also indicated to avoid 
convection, However such a small volume allows the possibility of the detection of light 
scattered elastically by the cell walls, which can also hinder the particle motions. 
Nevertheless, it should be emphasised that none of the systematic errors considered in 
§ 6 appears to explain the fact that the disagreement between experiment and theory is 
much larger for d (the amplitude of the long-time tail term) than for the diffusion 
coefficient D. 

In view of the smallness of the effect investigated and the abovementioned 
difficulties it would be foolish to claim categorically that a real difference between 
experiment and theory has been found: it is entirely possible that the discrepancy 
observed could be caused by some unidentified artefact. Nevertheless it is worth 
considering briefly where failings in the theory could be sought. Firstly we note that, in 
obtaining (2.6) from (2.3), we have assumed, in accordance with the usual theories of 
Brownian motion (Dufty 1974, Fox 1977), that the particle velocity v is a Gaussian- 
distributed random variable (see, however, Dufty and McLennan 1974). In fact, if 
measurements are made at short times (as in 8 4), such an assumption is not necessary 
since expansion of (2.3) gives 

g ‘ 1 ’ ( K , ~ ) = 1 - ~ K 2 ( A ~ 2 ( ~ ) ) + .  . , (7.1) 

regardless of the statistics of U. Thus non-Gaussian effects contribute only to higher- 
order terms in (7.1). The consistency of the data obtained at different (short) sample 
times (table 1) tends to support the unimportance of possible non-Gaussian effects. 
Secondly, the theory outlined in 0 2 and the appendix is based on the application of 
macroscopic hydrodynamics to the microscopic Langevin equation. Since the particle 
radius is some lo4 times greater than typical molecular sizes this approach seems 
reasonable, Nevertheless it should be noted that theories which start closer to first 
principles (see e.g. Pomeau and RCsibois 1975) are less categorical in their predictions 
(although the theoretical amplitude of the t-3’2 term in 4 ( t )  seems well established). If 
the theoretical approach used here is accepted then our results, if correct, must be seen 
as disagreeing with macroscopic theories of unsteady, low Reynolds number hydro- 
dynamic flows. While we have not searched the literature in detail, one assumes that 
these theories have been well tested experimentally on such macroscopic phenomena as 
starting flow in a pipe (e.g. Batchelor 1967, p 193). Certainly authors of modern 
textbooks on fluid dynamics do not seem to feel the need to cite much experimental 
confirmation of the theory. 

Finally we compare our results with other experiments on Brownian particles. The 
light-scattering results of Bouiller et a1 (1978) include in their error bracket both the 
theoretical prediction and our findings for the amplitude of the long-time tail term and 
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are therefore not inconsistent with either. Fedele and Kim (1980), by direct obser- 
vation of a single Brownian particle suspended in a gas, found a long-time tail of 
amplitude greater than that predicted theoretically. It is not easy, from their report, to 
determine error estimates which can be compared with ours. 

In conclusion, solid experimental evidence has been found for the existence of a 
long-time tail; significant disagreement between the experimental and theoretical 
magnitudes remains. 
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Appendix 

Laplace transformation of the modified Langevin equation (2.1 1) gives for $(s), the 
transform of the velocity autocorrelation function (e.g. Hinch 1975), 

m 

$(4 = lo exp(-st)4(t) dt 

=D[1  + ( ~ R ~ / v ) ' / ~ + ( ~ R ~ / 9 1 / ) ( 1  +2pp/p ) ] - '  

where the kinematic viscosity v = ~ / p .  We see immediately that 
m 

J(0) = I 4(t) dt = D. 
0 

(Al)  can be inverted by integration about a Bromwich contour in the s plane, cut along 
the real axis from --CO to 0 (e.g. Jeffreys and Jeffreys 1972, ch 12) to give 

R D  
4(t) = - dpp'" exp(-pt)(l + a p  + p p 2 ) - '  

where 

a = (R2/94(7 - 4 P p l P )  and p = (R2/9v)'(1 + 2 ~ p / p ) ~ .  

While it is possible to reduce this result to a closed form (e.g. Hinch 1975), the t + -CO 

asymptotic behaviour of 4(t)  and the related quantities D(7) and (Ax'(7))  are most 
readily obtained directly from their integral representations. Watson's lemma (Copson 
1972, p 218) allows us to write 

R D  O0 4(t)  = p lo dp p1l2 exp(-pt)[l - a p  + ( a 2  - p ) p 2 ]  + 0(t-9'2) 
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from which (2.12) follows immediately; we note that for p = pp the tC7/’ term vanishes 
identically. D(T) ,  the time-dependent diffusion coefficient (2.16), can be cast in suitable 
form for asymptotic development as follows: 

D(7) = lo7 dt  4 (t) 

On evaluating the first and second of these integrals and developing the asymptotic 
form of the third we obtain (2.17). The mean-square displacement (Ax’(7)) can be 
found similarly by noting that 

(Ax2( . ) )  = 2 loT D(t) dt. 

(2.14) follows from substitution of (A3) in (A4) and an integration by parts. 
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